首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1223篇
  免费   273篇
  国内免费   81篇
化学   378篇
晶体学   93篇
力学   66篇
综合类   3篇
数学   17篇
物理学   1020篇
  2024年   2篇
  2023年   30篇
  2022年   30篇
  2021年   52篇
  2020年   62篇
  2019年   41篇
  2018年   51篇
  2017年   34篇
  2016年   70篇
  2015年   61篇
  2014年   54篇
  2013年   214篇
  2012年   69篇
  2011年   73篇
  2010年   47篇
  2009年   69篇
  2008年   58篇
  2007年   65篇
  2006年   72篇
  2005年   56篇
  2004年   54篇
  2003年   52篇
  2002年   35篇
  2001年   30篇
  2000年   36篇
  1999年   19篇
  1998年   26篇
  1997年   19篇
  1996年   13篇
  1995年   14篇
  1994年   8篇
  1993年   6篇
  1992年   4篇
  1991年   6篇
  1990年   1篇
  1989年   5篇
  1988年   6篇
  1987年   4篇
  1986年   5篇
  1985年   9篇
  1984年   2篇
  1983年   2篇
  1982年   4篇
  1979年   4篇
  1975年   1篇
  1969年   1篇
  1957年   1篇
排序方式: 共有1577条查询结果,搜索用时 31 毫秒
991.
Orange Eu2+-doped phosphors are essential for light-emitting diodes for cornering lights to prevent fatal road accidents at night, but such phosphors require features of high thermal, chemical stability and facile synthesis. This study reports a series of yellow-orange-red emitting SrAl2Si3ON6:Eu2+ oxynitride phosphors, derived from the SrAlSi4N7 nitride iso-structure by replacing Si4+−N3− with Al3+−O2−. The introduction of a certain amount of oxygen enabled the facile synthesis under atmospheric pressure using the air-stable raw materials SrCO3, Eu2O3, AlN and Si3N4. SrAl2Si3ON6 has a smaller band gap and lower structure rigidity than SrAlSi4N7 (5.19 eV vs 5.50 eV, Debye temperature 719 K vs 760 K), but exhibits higher thermal stability with 100 % of room temperature intensity remaining at 150 °C compared to 85 % for SrAlSi4N7. Electron paramagnetic resonance, thermoluminescence and density functional theory revealed that the oxygen vacancy electron traps compensated the thermal loss. Additionally, no decrease in emission intensity was found after either being heated at 500 °C for 2 hours or being immersed in water for 20 days, implying both of the thermal and chemical stability of SrAl2Si3ON6:Eu2+ phosphors. The strategy of oxynitride-introduction from nitride promotes the development of low-cost thermally and chemically stable luminescent materials.  相似文献   
992.
We report a facile in-situ etching method for the synthesis of defective CuBTC (H-CuBTC) with hierarchical pore structure. The fabricated mixed matrix membranes (MMMs) containing H-CuBTC was prepared for the separation of CO2/CH4, showing superior separation performance due to the defective structure with larger pore size and more open Cu sites, which enhance the interactions between H-CuBTC and the polymer.  相似文献   
993.
Abdominal wall defects are a frequently occurring condition in surgical practice. The most important are material structure and biocompatibility. In this study, polylactic acid (PLA) mesh composited with a 3D printing of acellular dermal matrix (ADM) material is used to repair abdominal wall defects. The results show that the adhesion score of ADM/PLA composite scaffolds is smaller than PLA meshes. Immunohistochemical assessment reveals that the ADM/PLA composite scaffold can effectively reduce the inflammatory response at the contact surface between the meshes and the abdominal organs. And the ADM/PLA composite scaffold can effectively reduce the expression levels of the inflammation-related factors IL-6 and IL-10. In addition, the ADM/PLA composite scaffold repair is rich in the expression levels of tissue regeneration-related factors vascular endothelial growth factor and transforming growth factor β. Thus, ADM/PLA composite scaffolds can effectively reduce surrounding inflammation to effectively promote the repair of abdominal wall defects.  相似文献   
994.
Products made of ultra-high molecular weight polyethylene (UHMWPE) have a tendency to contain fusion defects, arising during the processing of the reactor powder. These defects have been implicated previously in failures of UHMWPE load-bearing surfaces in knee and hip prostheses. To minimize the fusion defects of UHMWPE products, the low molecular weight substance liquid paraffin (LP) was blended with UHMWPE. Our hypothesis was that the addition of LP could minimize structural defects and thus improve the properties of consolidated UHMWPE. The morphology and property of UHMWPE blends with LP were investigated by SEM, DMA, and stress relaxation. The addition of small amounts of LP improved tensile strength, the elongation at break, and friction and wear properties of UHMWPE, presumably due to structural defect elimination through reducing entanglements and enhancing the chain mobility of UHMWPE.  相似文献   
995.
Defect engineering in metal–organic frameworks (MOFs) is an exciting concept for tailoring material properties, which opens up novel opportunities not only in sorption and catalysis, but also in controlling more challenging physical characteristics such as band gap as well as magnetic and electrical/conductive properties. It is challenging to structurally characterize the inherent or intentionally created defects of various types, and there have so far been few efforts to comprehensively discuss these issues. Based on selected reports spanning the last decades, this Review closes that gap by providing both a concise overview of defects in MOFs, or more broadly coordination network compounds (CNCs), including their classification and characterization, together with the (potential) applications of defective CNCs/MOFs. Moreover, we will highlight important aspects of “defect‐engineering” concepts applied for CNCs, also in comparison with relevant solid materials such as zeolites or COFs. Finally, we discuss the future potential of defect‐engineered CNCs.  相似文献   
996.
Simple defect modification is a powerful means to improve material intercalation capabilities. It has received considerable interest lately as it can directly alter both the chemical and structural characteristics; techniques of note include cationic disordering, amorphization, doping, partial cation reduction, and manipulation of intrinsic defects. Defects can reduce the stress and the electrostatic repulsion between adjacent oxygen layers, which can directly alter the migration energy and diffusion barriers the alkali ion must overcome during intercalation. Complementary to experimental observations, theoretical predictions are paramount to developing a detailed understanding of material‐defect chemistry. This focus review aims to demonstrate that the optimized design of stable intercalation compounds could lead to substantial improvements in energy‐storage applications by overcoming intrinsic limitations.  相似文献   
997.
J. Cliff Jones 《Liquid crystals》2017,44(12-13):2133-2160
ABSTRACT

The zenithal bistable display (ZBD) was the first liquid crystal device mode to be commercialised that uses nematic disclinations in a constructive fashion, to use the flexoelectric effect inherent to all liquid crystals but at the time was considered too weak an effect to be useful, and to transfer nano-replication methods to the LCD manufacturing environment. The genesis of the invention and spin-out company ZBD Displays Limited will be described, and the evolution of that company from licensing model, through fabless manufacturer to display provider and finally to a system provider for the retail sector. The story may be useful not just to those interested in the science behind a rather unusual LCD, but also those involved in taking technology from laboratory to manufacturing, from idea to commercial success.  相似文献   
998.
Microfluidics has evolved as a major technological platform for biotechnology, material science and related fields. In virtually all of the areas of application, the flowing matrix is an isotropic fluid. However, replacing the typically isotropic fluid with an anisotropic liquid crystal opens up avenues beyond the viscous-dominated isotropic microfluidics. Especially, the material anisotropy of the flowing LC matrix and the consequent incorporation of topological constraints within the microfluidic device offer smart capabilities ranging from tunable flow-shaping to flexible micro-cargo concepts. The key to such capabilities lies in exploiting the possible topological constraints offered by the microfluidic confinement. As an example, we shall demonstrate how long-range ordering and consequent anisotropy in liquid crystals (LCs) could be utilised to devise a novel route to guided transport of microscopic cargo on ‘soft rails’, i.e. topological defect lines (disclinations). We create, position and navigate disclination lines within the LC matrix by tuning the coupling between flow and LC orientation. As model cargo elements, we have used isolated or self-assembled chains of colloidal particles, and demonstrated the broader capability of this method by transporting aqueous droplets on the defect lines. Topological constraints in combination with flow-director coupling thus endow LC microfluidics with features distinct from its isotropic counterparts.  相似文献   
999.
A photopolymer based on N-(phenyl)maleimide was synthesized and the liquid crystal (LC) alignment effects of the photopolymer layer on homeotropic alignment were studied. Good LC alignment with UV exposure of PMI5CA (N-(phenyl)maleimide with a 5-carbon chain cinnamoyl group) was obtained. However, defective LC alignment was observed for PMI3CA (N-(phenyl)maleimide with a 3-carbon chain cinnamoyl group) and PMIF (N-(phenyl)maleimide including a fluoro-cinnamoyl group). Good LC alignment with UV exposure on the PMI5CA surface was observed with annealing temperature up to 150°C. It seems that the LC aligning ability of the photopolymer layers based on N-(phenyl)maleimide depends on the side chain length of the photopolymer.  相似文献   
1000.
纳米线(NW)结构内的微观结构缺陷对NW的机械性能存在一定的影响。NW断裂位置的预测关系着纳米器件应用的寿命,进而引起了人们的广泛关注。在本工作中,基于统计分析,分别研究了单晶铜纳米线(Cu NW)拉伸过程中出现的断裂位置以及在应力屈服点处产生的初始微观结构缺陷(初始缺陷)的位置对温度的依赖性,进一步探究了两者之间的联系。利用分子动力学(MD)模拟了单晶Cu NW在20~300 K的温度范围内的拉伸状态,共包含6个体系,各温度体系包含300个独立的样本。基于机器学习,采用density-based spatial clustering of applications with noise (DBSCAN)算法,将hexagonal close-packed (hcp)原子划分为各个初始缺陷以进一步确定其位置。统计结果显示,当温度低于50 K时,初始缺陷的位置集中在NW的两端。随着模拟温度的上升,MD模拟结果展现了单晶Cu NW的拉伸过程中的杨氏模量、平均屈服应力、平均势能等机械性能对温度的依赖性。温度的升高进一步促使了更多初始缺陷的产生,并使得初始缺陷的位置由统计分布的两端向中间平均化。与初始缺陷相比,各温度下的断裂位置集中在两端。统计结果表明,模拟的温度范围对NW的断裂位置无明显影响,但对初始缺陷的产生具有明显影响。当温度低于100 K时,初始缺陷的位置分布与断裂位置分布呈现了一致性。由于两者具有不同的温度依赖,其差异随着温度的上升逐渐显现。对不同温度下的微观结构形变行为观察发现,断裂失效明显受到NW两端的表面效应和阻挡效应的影响。最终的断裂位置受塑性形变中后期的影响,与应力屈服区产生的初始缺陷无直接联系。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号